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Both the energy differences between metastable and stable phases and the energy barriers separating these
phases decrease with decreasing particle number. Then, for small enough systems, random heterophasic fluc-
tuations of the entire system become an observable form of thermal motion. We discuss mechanisms and
observation conditions for these random transitions between phases.
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I. INTRODUCTION

In a macroscopic system, a discontinuous �first order�
phase transition is manifested by discontinuity of thermody-
namic properties at the phase transition temperature T�. For
finite systems, these singularities are replaced �1–3� by a
continuous change in a transition range �Ttr of temperatures.
This range increases upon diminishing the number N of par-
ticles �4�, but it has been found �3� rather narrow for systems
with a large particle number N: �Ttr /T��1 for N�1, thus
allowing one to treat the rapid change as a smoothed phase
transition, approximately characterized by a transition tem-
perature.

It has been known for a long time that this temperature
shifts with diminishing system size �5,6�. More recent de-
tailed studies �2,3,7–19� of finite systems in the transition
range of temperatures revealed a rather complex set of be-
haviors: surface melting, noncrystalline isomers, pattern for-
mation, and properties fluctuations at time scales much larger
than particle vibration period. A discussion of size related
properties changes, and a list of references on the subject can
be found in �9�. The complexity becomes already observable
while the phase transition range is still narrow, for N
�105–107 in three-dimensional and N�104–106 in two-
dimensional systems. In a condensed system, this particle
number corresponds to the nanometer range of sizes. The
lower limit here is set by the condition that most particles
belong to the bulk, so the bulk dictates the phases of the
system, and surface effects can only shift transition param-
eters. The upper limit depends on the phenomenon; as ex-
plained below, in a large enough system the periods of prop-
erties changes may become too large for observation.

Some of the observed phenomena may be explained by
the increased role of the surface in smaller systems �3,7,8�.
Surface-related effects can be controlled, for example, by
imbedding the system in an appropriate matrix. Other new
phenomena reflect features common to all finite systems: the
energy differences and energy barriers between different
thermodynamic states in finite systems are finite and decreas-
ing when the particle number decreases. Then, heterophasic
fluctuations that are small-scale phenomena in macroscopic
systems �20� may change the state of the entire finite system.
The objective of the current study is to study conditions for
observing these fluctuations.

To separate the surface-driven effects from the bulk finite
size effects, we first consider a toroidal �periodic� system that
has no external surface; systems with an external boundary
are then discussed assuming that the system is large enough
so that most of the particles belong to the bulk. Toroidal
systems are realized in computer simulations under periodic
boundary conditions. In recent decades, computer simula-
tions became an increasingly important source of infor-
mation about finite systems. Three-dimensional �3D� and
two-dimensional �2D� systems have been studied
�2,3,9–16,19,21� using different simulation algorithms, fre-
quently with the goal of understanding phase transitions in
macroscopic systems.

One of the advantages of computer simulations is that
simulation algorithms are designed to produce an equilib-
rium isochoric �NTV, constant particle number N, tempera-
ture T, and volume V� or isobaric �NTP, constant N, T, and
pressure P� Gibbs ensemble. For real systems, these standard
experimental conditions are unambiguous only in the macro-
scopic limit; in smaller systems, the equilibrium ensemble
may depend on the conditions on or near the surface �17,18�.
The case discussed in the current paper is a nanosize particle
embedded in an inert matrix. In computer simulations, the
role of the matrix is played by the cell that is kept at constant
shape and size for �NTV� conditions, and is only allowed to
change volume to maintain constant pressure for �NTP�
simulations.

More complex situations include systems prepared in
vacuum with or without a substrate. At times when evapora-
tion can be neglected, these systems can be approximately
described by a microcanonical ensemble—see Ref. �3� for a
review. These more complex situations are beyond the scope
of our paper.

II. PERIODIC SYSTEMS

One expects that in large enough finite systems the kinet-
ics of a discontinuous phase transformation is similar to the
nucleation kinetics in macroscopic systems �22�: a change of
state parameters from the old to new phase makes the old
phase metastable, and then nuclei of the new phase appear in
the old phase as fluctuations, reach critical size, and grow to
become macroscopic regions in the final equilibrium state.
Transient states between the metastable old phase and the
stable new phase are then two-phase: part of the system with
Nnew�N particles is in the new phase and the rest of the*Corresponding author. a-patashinski@northwestern.edu
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system with Nold=N−Nnew particles is in the old phase. The
phases are separated by an interface; we consider here the
case when the width of this interface is negligibly small
compared to the system size, and the number of interface
particles can be neglected in the particle balance. The inter-
face is characterized by surface tension � giving the energy
cost of creating a unit area of the interface.

This two-phase approach is widely used in the theory of
nucleation and phase transitions kinetics �22,23�. In isotropic
models, � is treated as a scalar function of state; when an-
isotropy is important, the surface tension becomes a function
of a point at the interface depending on the local orientation
of the interface relative to the anisotropy. Note that we label
the phases “new” and “old” as a conventional way to distin-
guish between phases and to indicate the direction of phase
changes when this direction is important.

In an isobaric system at the phase transition point, the
Gibbs free energies of the new and old phases coincide. In a
macroscopic system, the energy barrier for a heterophasic
fluctuation in the entire system is infinitely high, forbidding
heterophasic fluctuations of the entire system at any time
scale. This barrier becomes finite for a finite supercooling or
overheating, but then the energy difference between the old
and the new phase in a macroscopic system is macroscopi-
cally large, making the transition from metastable to stable
state irreversible �9�. Heterophasic fluctuations in the new
phase are then local phenomena �20� with a short lifetime.
With system size decreasing, the energy difference between
the stable and metastable phases decreases, so there is a tran-
sition range �Ttr of temperatures where the probability to
find the equilibrium system in either phase is substantial.
However, the equilibration time to achieve this two-phase
distribution is an exponential function of the interphase bar-
rier energy, and may appear too large for observation. The
energy barriers keeping the system in a phase decrease with
decreasing particle number N, and in small enough systems,
a reverse transition from the new to the old phase can be
observed and equilibration achieved on experimental time
scales. Then, for these systems heterophasic fluctuations be-
come an observable form of equilibrium thermal motion. The
size of the system to observe these fluctuations depends on
available observation time; for typical experimental condi-
tions, the characteristic size is in nanometer length-scale. Be-
low, we present a simple model for these fluctuations and
discuss conditions for their observation.

Consider a finite system in thermodynamic equilibrium
under conditions of constant particle number N, pressure P,
and temperature T ��NTP� system�. Near a phase transition,
two-phase states with Nnew particles in the new phase and
Nold=N−Nnew particles in the old phase appear as fluctua-
tions. The probability P�Nnew�= p�Nnew�dp�Nnew� of finding a
state with a number Nnew of new phase particles in the range
�Nnew ,Nnew+dNnew� is defined by the minimal work Wmin of
creating this nonequilibrium state �22�. For an �NTP�-system,
this minimal work is given by the nonequilibrium Gibbs free
energy G�Nnew� �22,23�. We consider a two-phase model for
a finite system with G�Nnew� written as a sum of contribu-
tions of one-phase regions and the interface �1,2�:

p�Nnew� = Ze−Wmin�Nnew�/kBT, Z = �
0

N

p�Nnew�dNnew,

Wmin�Nnew� = G�Nnew� = Nnew	new + �N − Nnew�	old

+ �
�Nnew� . �1�

In this formula, kB is the Boltzmann constant, 	new and 	old
are the chemical potentials of the new and old phases, � the
surface tension, and 
 the area of the interface. Formula �1�
assumes that all other modes except for Nnew are at equilib-
rium. Then, the entropy related to interface conformations
has to be added to the Gibbs energy. Most of this entropy
comes from small-scale shape fluctuations �surface waves� of
the interface; this part is included in the surface tension.
Contributions related to interface position and larger-scale
shapes are small and can be neglected. Due to average cur-
vature of the phase-separating interface, pressures in the
phases may differ. We are primarily interested in the situation
when both phases occupy a significant fraction of the vol-
ume, so that the curvature of the interface is small.

In the macroscopic limit N→�, the condition 	new=	old
defines the phase transition line T=T��P� in the �T-P�-
thermodynamic plane. For finite systems, this condition de-
fines the conventional transition temperature. Near the phase
transition temperature along an isobar, the difference �	new
−	old��−s�T, where s=−��	new−	old� /�T is the per-
particle transition entropy, and �T=T−T��P�. Chemical po-
tentials and surface tension depend on system size. This re-
sults in a size-dependent shift of the transition range. One
expects these effects to be small when the size of the system
is much larger than the interaction radius of particles. In
anisotropic systems, surface tension is a local characteristic
depending on the local orientation of the interface. Generali-
zation of our model to include anisotropy is rather straight-
forward, but it involves new parameters. Qualitatively, ef-
fects discussed in the current paper are determined by the
rather general features of the Gibbs energy landscape on the
Nnew axis: deep minima at the ends, and a maximum between
minimum points. These features are schematically illustrated
by Fig. 1.

The Gibbs energy �1� has two end-point minima: G
=Gnew at Nnew=N, and G=Gold at Nnew=0. At these points,
the interface area ��Nnew� and the interface contribution to
Gibbs energy vanish. In the Gibbs energy landscape on the
Nnew axis, each minimum is the bottom of an energy basin

FIG. 1. �NTP�-system: a schematic plot of the nonequilibrium
Gibbs energy G�Nnew� �solid line� and of the interface and bulk
contributions �dashed lines�.
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associated with corresponding phase. The difference in
Gibbs energies between the minima is Gnew−Gold=N�	new
−	old��−Ns�T. Between the end points, there is a maxi-
mum Gmax of the Gibbs energy at Nnew,max=xN �1�x�0�
separating the two basins. At the maximum,

dG�Nnew�
dNnew

= �
d


dNnew
− �	old − 	new� = 0;

d


dNnew
=

	old − 	new

�
�

s�T

�
. �2�

In a macroscopic system, Eq. �2� describes a critical
nucleus �22� of the new phase. This nucleus is a sphere with
the radius Rc��� / �s�T�� and the number of particles
Nnew,c��� / �s�T��D; the surface �the interface area� for this
nucleus is ��Nnew���Nnew��D−1�/D, where D=2 or 3 is the
number of space dimensions. The nucleus becomes very
large at small �T. At the phase transition �T=0, and both the
critical radius and the related surface energy are macroscopi-
cally large, so there is a macroscopically high excitation en-
ergy barrier between phases forbidding heterophasic fluctua-
tions of the entire system. In a finite system, the maximum
size, particle number, and interface area of a nucleus are
finite, so the energy barrier between phases is also finite. For
a periodic system at the conventional phase transition point
�T=0, the maximum of the Gibbs energy is at Nnew=N /2.
The interface area has at this point its maximum value.

The probability of finding the system described by the
equilibrium ensemble �1� in the old basin is pold
�exp�−Gold / �kBT���, and in the new basin pnew
�exp�−Gnew / �kBT���. The condition that the equilibrium en-
semble includes significant fractions of both phases is then
Gnew−Gold=N�	new−	old��−Ns�T�kBT�; this defines the
transition range of temperatures �Ttr�kBT� / �sN�. However,
this definition assumes complete equilibrium. In a large
enough system, the equilibration time for this ensemble can
exceed available times. This time is determined by the en-
ergy of creating the critical nucleus. In the critical range of
temperatures, the critical nucleus occupies a significant part
of the system, and its size is about the system size, so both
the surface area of the interface and the energy to create this
nucleus grow with increased system size. A supercooling or
overheating beyond the transition range results in a smaller
critical nucleus and accelerates the transition to the new
phase, but then the barrier for the transition back to the old
phase includes the energy difference between phases and be-
comes too large for this transition to happen at experimental
time scales. By diminishing the number N of particles in the
system, one can arrive at a system size when for the transi-
tion range of temperatures the transition from old to new
phase happens on observable times. Then, the difference be-
tween excitation energies for a transition from the new to old
phase and for the transition from the old to new phase be-
come small, and both transitions become observable.

In a macroscopic system the number N of particles is
macroscopically large, so the transition range of tempera-
tures vanishes; on approaching the phase transition tempera-
ture, the activation energies Gmax−Gnew and Gmax−Gold for

an interbasin fluctuation become macroscopically large.
Then, the probability to find the system close to the basin-
separating maximum becomes negligibly small, and each
phase can be unambiguously defined as an ensemble of states
belonging to the corresponding basin.

For a finite system in the transition range of temperatures,
this phase-basin correspondence becomes conventional: one
identifies the phase of the fluctuating system with a basin by
convention that for Nnew�Nnew,max the system is in the old
phase, otherwise the system is in the new phase. The equi-
librium ensemble gives now a finite probability to find the
system in each of the phases. This two-phase interpretation,
based on the phase-basin correspondence, becomes ambigu-
ous when there is a significant probability to find the system
close to the basin-dividing barrier. The ambiguity is small
when Gmax−Gnew and Gmax−Gnew are large compared to ther-
mal energy kBT. The same energies define the average times

old and 
new for the system to continuously keep in the same
basin; according to the theory of thermally activated pro-
cesses, these times can be described by an Arrhenius-like
formula:


old =
1

�
e�Gmax−Gold�/kBT, 
new =

1

�
e�Gmax−Gnew�/kBT,

Gmax − Gold = �
max − �N − Nnew�	old,

Gmax − Gnew = Gmax − Gold − sN�T , �3�

with � being the frequency of attempts to change the basin;
one expects that the time 1 /� is of the order of the vibration
period for system particles.

In a metastable macroscopic system, 
old is finite and size-
independent while 
new is too large to be observed. The ac-
tivation energies and the lifetimes 
new and 
old decrease with
decreasing particle number N. The condition that both life-
times are of the same order of magnitude coincides with the
condition defining the transition range �Ttr that there is a
significant probability of finding the equilibrium system in
any of the phases. Then, in a small enough system in the
transition range �Ttr of temperatures, both the metastable-
stable and the stable-metastable transitions can occur at ob-
servable times, and random phase changes �heterophasic
fluctuations� become a form of thermal motion. The sum

new+
old gives the average period for these fluctuations.
This period depends on N and �T; for a given particle num-
ber N, this period as a function of temperature has a mini-
mum when �T=0 and 
new=
old. The minimal period rapidly
increases with increasing particle number. The condition 

�
new+
old sets the upper limit N�
� for particle number in
the system to observe heterophasic fluctuations at time-scale

.

With diminishing system size and all other factors kept
constant, Nnew,max increases towards its largest possible value
Nnew /2. At �T=0, Gmax−Gold=Gmax−Gnew=��max
��N��D−1�/D. Using Eq. �3� one gets the upper limit Nup�
�
for the particle number in a system fluctuating at �T=0 be-
tween the old and new basins at time-scales t�
:
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Nup�
� � 	1

p
ln




�

D/�D−1�

, p =
r0

2�

kBT
,

Gmax − Gold = Gmax − Gnew

= �
max � r0
2�N�D−1�/D � kBT� ln




�
, �4�

r0 is the interparticle distance. The ratio p=r0
2� / �kBT�� is a

nondimensional materials characteristic.
When �T�0, the old phase is metastable. The average

lifetime 
new of the system in the new phase is now larger
than that in the old phase. The ratio 
new /
old=exp��Gold
−Gnew� /kBT��1 is of the order of unity in the transition
range of temperatures and becomes very large beyond this
range. Increasing supercooling or overheating of the old
phase results in increasingly asymmetric heterophasic
switches: the system stays a long time in the new phase and
for a short time visits the old one. When 
new becomes larger
than the observation time, the transition is essentially irre-
versible. For a system yielding the condition �4�, the reverse
transition is observable at time-scale 
 in the temperature
range �Thp�
�,

�Thp�
� =
kBT�

sN
ln




�
. �5�

Note that the transition range of temperatures �Ttr is defined
by the condition that in the equilibrium ensemble, the prob-
abilities to find the system in the old as well as in the new
phase are of the order of unity; this equilibrium can be
reached only at times much larger than 
=
new+
old. The
ratio 
 /� may be very large, so the range �Ttr�
� of tempera-
tures where the heterophasic fluctuations are observable may
be larger than the transition range �Ttr�kBT� / �sN�, but the
asymmetry of phase change rapidly increases when ��T�
��Ttr.

With decreasing particle number N, the average period for
heterophasic fluctuations decreases and the probability
Pinter�exp�−��max /kBT��
 /� of finding the system close
to the activation barrier increases. In a small enough system,
the phase-basin correspondence and the description of the
system in terms of phases can become ambiguous. The con-
dition Pinter�
 /��1, assumed by the two-phase approach,
limits the system size from below; when this condition is
violated, the two-phase picture is not applicable.

An �NTP�-system large enough to justify the phase-basin
correspondence is with a high probability occupied by the
old or the new phase. In contrast to that, a macroscopic or
very large �NTV�-system �constant N, T, and volume V� has
a range of densities n=N /V where two coexisting phases
coexist at equilibrium while having different densities. The
number Nnew of particles in the new phase, and thus volumes
occupied by phases, are determined by the condition that the
pressure in the system equals the phase transition pressure
P= P��T�. The minimal work of preparing a state with a non-
equilibrium value of Nnew is now the free energy F�Nnew�
=G�Nnew�− PV, it has a deep minimum �see a schematic plot
of F�N ,T ,V ,Nnew� in Fig. 2� at the equilibrium value of Nnew.
There are also two end-point minima, both metastable, de-

scribing nuclei of corresponding phases. When the particle
number N is decreased, the free energy landscape becomes
more shallow, and fluctuations of the relative numbers x
=Nnew /N and 1−x=Nold /N increase. The phase coexistence
picture is justified by the same condition 
 /��1 as the
phase-basin approximation.

III. NONPERIODIC SYSTEMS

The simple model of a finite system under periodic
boundary condition, used above to discuss system size limi-
tations for observation of heterophasic fluctuations, does not
account for many factors. A more realistic model has to in-
clude additional system-specific fluctuating characteristics,
for example, local anisotropy in crystals and liquid crystals.
However, one expects that under periodic boundary condi-
tions, the two-phase picture and the qualitative predictions of
the simple model still apply.

Boundary conditions other than periodic introduce a new
component, the external boundary of the system, which
needs to be included in the model. The external boundary
contribution to the Gibbs free energy describes a thin layer
near the surface where the local structure is perturbed by the
presence of the boundary and possible direct interactions
with the imbedding matrix. The width �r of this layer is
expected to be about the width of the phase-separating inter-
face; as described, we study systems of a size much larger
than this width, so the bulk contribution is much larger than
the surface contribution. However, close to a phase transition
the difference in Gibbs energy between phases is also small,
so the surface contribution may become important.

In a system with a boundary, a nucleus can have part of its
surface at the interface between phases, and part at the ex-
ternal boundary. The surface tension at the boundary depends
on the phase of the adjacent material, so for a two-phase state
there are the surface tensions �new and �old for the new and
old phases at the external boundary and the surface tension �
at the interface between phases. The minimal work to create
a critical nucleus at the boundary is usually smaller, and thus

FIG. 2. �NTV�-system: a schematic plot of the nonequilibrium
free energy F�Nnew� �solid line�, and of the interface and bulk con-
tributions �dashed lines�.
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the probability of nucleation at the surface �heterogeneous
nucleation� is much larger, than that in the bulk. The differ-
ence �=�old−�new characterizes the surface-related bias to-
wards the new phase.

Consider a two-phase state with Nnew particles in the new
phase, 0�Nnew�N, and external boundary parts belonging
to the new and old phase meeting at the junction with the
phase-separating interface. The surface part of the Gibbs en-
ergy includes now the energies of the interface and all parts
of the external surface and of their junction. The geometry of
the two-phase system at given Nnew is determined by the
condition of minimum Gibbs energy. In particular, the angles
of contact between surfaces at their junction are determined
by the condition of mechanical equilibrium �22�. This, in
turn, determines the shape of the two-phase system. The
Gibbs energy can be then calculated from the system geom-
etry defined by the angles of contact and Nnew. For a system
confined in a matrix that has a fixed form and can only
change the volume to maintain constant pressure, the shape
of the external surface is determined by the matrix.

For the general case, the formula for the Gibbs free en-
ergy becomes rather cumbersome, although the dependence
of this energy on Nnew is qualitatively similar to that of a
system with periodic boundary conditions: in the transition
range of temperatures there are two end-point minima corre-
sponding to the stable and metastable phase, and a maximum
describing the barrier energy Gmax for heterophasic fluctua-
tions. Details depend on the bias �=�old−�new. Qualitatively,
changes in phase transition behavior due to bias can be un-
derstood from general considerations.

With bias ��0 towards the new phase increasing, the
contact angle decreases, thus forcing a small new phase re-
gion to be more and more layerlike. The conventional phase
transition temperature and the phase transition range of tem-
peratures shift towards the old phase due to surface energy
gain in transition �5,6�; this effect is proportional to the frac-
tion of the system at the surface and thus is larger for smaller
systems. The energy barrier for nucleation decreases, so the
frequency of heterophasic fluctuations increases.

For a large bias ���, no contact angle can satisfy the
mechanical equilibrium condition at the junction; in this spe-
cial case, the entire external surface is always in the new
phase because this lowers the Gibbs energy by at least the
energy �G= ��−����0� of creating a double-layer with the
new phase at the surface. Here, ��0� is the external surface
area.

Note that the surface tensions, and thus the bias, depend
on temperature. In an orientation order model of melting
�24�, a thin layer of melt appears at the surface at a tempera-
ture close to the bulk melting temperature. The appearance of
this layer corresponds to the condition ���. As already
mentioned, the scalar two-phase model of the current paper
applies to the crystalline phase only quantitatively. Below,
we discuss the case ��� in more detail.

For ���, the minimum of the Gibbs free energy at given
Nnew assumes that the external boundary always belongs to
the new phase, and the interface area ��Nnew� is a monoto-
nously decreasing function of Nnew, with a maximum ��0� at
Nnew=0. Consider a spherical 3D particle of radius R, ��0�
=4�R2. The old phase occupies a sphere of radius Rold so

that its surface area and volume are ��Nnew�=4�Rold
2 and

Vold= �4 /3��Rold
3 . The number of particles in the new phase

is Nnew= �N−Nold�= �N−noldVold�, where nold is the particle
number density of the old phase. The Gibbs free energy for
the spherical system has the form

G�Nnew� = G�N� + 4��� 3

4�nold
�N − Nnew�
2/3

− �N − Nnew�s�T� − T� . �6�

Here, G�N� is the Gibbs free energy for Nnew=N. The con-
ventional �bulk� transition temperature T� is defined by the
condition 	new=	old, and the higher temperature phase is the
new phase �for the opposite choice, the sign of the last term
in Eq. �6� has to be changed�. Note that due to different
densities of phases, the external radius R depends on Nnew.
Below, we assume that this density difference is small, and
neglect this effect.

The Gibbs energy �6� is schematically shown in Fig. 3.
The slope of the interface energy is negative and has a sin-
gularity at Nnew=N. Deep in the temperature range �T�T��
of the old phase, the bulk part of the Gibbs energy as a
function of Nnew has a large constant positive slope. The
Gibbs energy has end-point minima at Nnew=0 and Nnew=N
and a maximum at Nnew,max,

Nnew,max = N −
4�

3nold
2 � 2�

s�T� − T�
3

. �7�

The two minima of the Gibbs energy become equal at T
=T�,new,

T�,new = T� −
4��

sN
	 3N

4�nold

2/3

,

Nnew�T�,new� = N�1 − 	2

3

3
 � 0.70N . �8�

The temperature T�,new is the new phase transition tempera-
ture; in the macroscopic limit N→�, the shift �T�

=T�–T�,new of the phase transition temperature towards the
biased phase vanishes as N−1/3. With temperature increasing

FIG. 3. �NTP�-system with very high surface bias: nonequilib-
rium Gibbs energy G�Nnew� �solid line�; interface and bulk contri-
butions �dashed lines�.
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towards T�, the maximum position Nnew,max shifts to smaller
values, reaching zero at T=Tsp,

Tsp = T� −
3�

s
	 4�

3nold
2 N


1/3

. �9�

At temperatures T�Tsp the Gibbs energy becomes a mo-
notonously decreasing function of Nnew; the only minimum at
Nnew=N corresponds to the biased new phase.

As in the case of a system in periodic boundary condi-
tions, the form of the Gibbs energy with two end-point
minima and a maximum leads to random heterophasic fluc-
tuations as a form of thermal motion observable in small
enough systems; the average period of these fluctuations is
given by Eq. �3�. A fluctuation from the old to the new phase
moves the interface from the external surface towards the
center of the system through the critical configuration at
maximum of the Gibbs energy; a fluctuation from new to old
phase involves nucleation of an old phase nucleus in the new
phase and its fluctuational growth to reach the same critical
configuration. At the new transition temperature Tnew,�, the
Gibbs energy has the maximum at Nnew=Nnew,max�T�, and the
activation energy �G to reach this critical configuration from
any of the phases is

�G = Gmax − G�N� = 4��	 3N

4�nold

2/3�	2

3

2

− 	2

3

3


� 0.72�	 N

nold

2/3

. �10�

This excitation energy is lower than in a corresponding pe-
riodic system, and decreases with increasing bias.

IV. SOME REMARKS

The transition most studied in finite systems is the
melting-crystallization phase transition. Due to the aniso-
tropy of the crystalline packing, the crystal surface energy
depends on the direction of the interface relative to the crys-
talline axes. The typical nucleus is then not spherical �not
circular for 2D systems�. Generalization of the simple scalar
model �1� to include anisotropy is rather a straightforward

task. The simple scalar model �1� is expected to describe
melting only qualitatively. However, heterophasic oscilla-
tions are determined by qualitative features of the Gibbs en-
ergy that are common in isobaric finite systems in the phase
transition range of temperatures.

In Ref. �15�, random density oscillations with periods
�103� in a two-dimensional �NTP�-system of N=4096
Lennard-Jones particles have been reported. When the size
of the system was increased to 36 864 or more particles,
these oscillations have not been seen, and the transition be-
came irreversible at the available simulation time scale. Al-
though this is in line with the above theory, applicability of
the two-phase description to 2D systems may impose addi-
tional size limitations.

A necessary condition for the validity of the two-phase
picture is a small width of the interface compared to the
system size. For phase transitions characterized by large dis-
continuity of properties, the interface is only few interpar-
ticle distances wide, so the two-phase picture is expected to
hold at least qualitatively when N�1. However, in some
systems, for example, in systems that are close to a critical
point, the differences between phases are small and phase
transitions are almost continuous. In a near-critical state, the
correlation radius of fluctuations and the width of the inter-
face between phases become large �23�.

Data presented in �15� and other publications are consis-
tent with the assumption that the width of the crystal-melt
interface in the 2D Lennard-Jones system is much larger than
the interparticle distance. Then, a system with particle num-
ber N�1 �for example, N=2500 or 4096� may still be too
small to host a critical nucleus. In this case, a spatially ho-
mogeneous phase change involving excited local structures
may have lower excitation energy than the two-phase mecha-
nism.
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